与光共舞 科学家走向光学应用新极限(2)

时间:2015-03-10 09:35来源:中国科学报作者:yeyan 点击:
------分隔线----------------------------

摘要:  挤压光   Pierre Berini是一位知道如何讨价还价的科学家,在他的实验中就可以看到证据:充满了他在当地厂家打折时买来的激光器、振荡器和其他物

关键字:激光,激光技术,激光脉冲

  挤压光

 

  Pierre Berini是一位知道如何讨价还价的科学家,在他的实验中就可以看到证据:充满了他在当地厂家打折时买来的激光器、振荡器和其他物件。这位加拿大渥太华大学的物理学家在发现一些关键商品时,经常会批量购进,有时这些设备看起来像是无用的废弃物。“它们经常会给你带来很多意外惊喜。”他说。

 

  Berini对经营失败的公司有一颗同情心。他是等离子体研究领域的领袖,这是一种通过光来操纵电子的技术,该技术可用于超高速计算机信息传输。为了在通信行业推进等离子体电路的市场化,2000年初,他成立了一个由风险投资支持的名为Spectalis的公司,但数月之后,就亲历了网络泡沫的破裂。最终公司运营以失败告终,他不得不拍卖掉所有设备并关了店面。然而,他并未被失败击倒,并计划在今年重整旗鼓,成立一家公司,把开发的技术应用到手持终端设备的微型感应器上,用来迅速、准确地检测疾病。

 

  这些设备采用了一种来自电子波的独特的光,这些电子波可以在金属表面传播,并与绝缘体,如空气、玻璃等产生接触。当用一束激光激发后,这些带电体或等离子体会生成波动的电并在金属表面形成磁场。被固定在这个界面后,电波可以形成漏斗形状,并把其波长限制在数十个纳米之内——相当于激光波长的1/10。挤压后的光波比激光的传播速度慢得多,因此可以保持同样的频率。

 

  在上世纪90年代末,Berini一边寻找改善普通电器元件和检光器的方法,一边研究等离子体。光比电子信号传播快得多,因为用它连接硅片可以大幅提高运算速度。但是光却受到了其波长的限制:尽管电子元件可以缩小到数十个纳米,电子通信中使用的红外光却不能集中到直径小于1微米的点上。“这是根本上的不相容。”Berini说。由等离子体技术获得的波长更短的等离子体波看起来很有前景,但是它们经常不听话。因为金属有电阻,由电子运动产生的光波很快就会消失,仅能传播几微米。

 

  Berini利用可以精巧地制作出纳米结构,并且越来越便宜的现成技术,创造了第一个可以传播数厘米的等离子体波。他的实验室设计了整套电路,使等离子体振子沿着厚度低于30纳米的金属带运行。

 

  但是让等离子体波传播得更远就要增加光的波长。尽管等离子体波比常规光波更小,但这一折衷却降低了它们的优势,而且Berini发现它很难打破电子通信行业的现状,该行业使用的每个电子元件已经使用了数十年。因此,他和其他科学家忙于研发其他技术,以应对新光源波长较短的问题,即通过将其扩展至应用领域,利用光探测器等把新光源的劣势变成优势;或者采用纳米结构扩大等离子波。物理学家现正在利用各种材料研发各种纳米形状,如星星、木棒以及新月等,这些材料可以把等离子体波用于捕获太阳能、杀死癌细胞以及制造集成芯片的激光器等。

 

  渥太华大学物理学家Henry Schriemer称Berini是一位“重视理论研究的典型的实验主义者”。但是Berini表示,正是应用前景推动他的实验室运行;他把自己的创业决心归为遗传自父母的特性,他的父母在安大略省经营着自己的采矿和伐木生意。

 

  超快光

 

  Margaret Murnane是在美国科罗拉多州JLLA工作的一位物理学家,这是一个由科罗拉多州立大学和国家标准技术局联合成立的机构。Murnane和丈夫Henry Kapteyn在那里运行着阿秒(10-18秒)X射线激光脉冲领先研究实验室,这种超短激光脉冲的每次闪光时间仅有“十亿分之一秒的十亿分之一”。

 

  这种超快X光波长极短,但能量很高,经常被用于潜入原子深处并在纳米级层面进行成像。通常,这种应用发生在数十亿美元的、通过把电子加速至光速从而产生X光的装置中,如加利福尼亚州的直线性连续加速器光源SLAC装置。但Murnane的方法却可以让这一技术呈现在餐桌上。这让科学家可以观察到原子周围的电子的运动状态,从而了解其化学键或是研究其在磁性硬盘中的旋转情况。

 

  Kapteyn表示,Murnane的成功来自于她对知识的渴求。尽管童年时期,Murnane家中既没有中央空调,也没有室内水管,但凭借对知识和学习的热爱,她取得了今天的成就。Murnane在加州大学伯克利分校读研究生期间遇见Kapteyn,从此两人一直在一起工作,且彼此之间已建立了深厚的伙伴关系,Murnane认为,这是他们在科研上取得成功的基础。“身边有人不断挑战你的观点非常有益,这种关系有利于科学研究。”她说。

 

  两人一起解决了他们在研究生期间一开始就试图解决的问题——如何产生类似于激光的高能光束。和大型科学装置进行电子加速的过程不同,他们的策略是把可见光的很多光子合成高能X射线光子。这一过程与声波类似。在带弦的乐器中,轻轻地波动一根弦会发出单一的声调。“一个人拨弦的力度越大,就会出现更多的高次谐波。”Murnane解释说,每次产生的谐波会根据初始的频率呈更大整数倍增加。

 

  当超短激光脉冲在上世纪90年代被发现后,Murnane 和Kapteyn意识到,他们或许可以利用其剧烈地“拨动”电子——使其加速离开或靠近氦原子,从而产生高能光子谐波。他们的研究团队利用明亮的紫外线光束取得了成功,但是当让光束保持激光的特点时,由于光波同步出现,很难增加能量。

 

  Murnane表示,他们的研究尚未到达极限——更高能量的X光,甚至是更快的飞秒(10-21 秒)脉冲也有可能实现。“科学领域的错误概念之一是,一些时候认为激光已经是一种过时的技术,没什么新东西再值得研究。”她说,“这绝非事实。”

【激光网激光门户网综合报道】( 责任编辑:huahua )
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------

【媒体须知】凡注明"来源:激光门户网portalaser.com.cn"的作品,包括但不限于本网刊载的所有与激光门户网栏目内容相关的文字、图片、图表、视频等网上内容,版权属于激光门户网和/或相关权利人所有,任何媒体、网站或个人未经激光门户网书面授权不得转载、摘编或利用其它方式使用上述作品;已经书面授权的,应在授权范围内使用,并注明"来源:激光门户网"。违反上述声明者,本网将追究其相关法律责任。

【免责申明】本文仅代表作者个人观点,与激光网激光门户网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网转载稿件或作者投稿可能会经编辑修改或者补充, 如有异议可投诉至:Email:portallaser@qq.com

Copyright   2010-2035 portalaser.com.cn Inc. All rights reserved.激光门户 版权所有
鄂ICP备2022018689号-1