当下技术的进步呈指数式增长,并持续加速,其对各种新型设备的需求也日益增加,尤其是可集成到芯片上的微系统。众所周知,微电子技术的发展改变了人们操纵电力的方式,使得各种复杂的电子产品成为我们日常生活中不可或缺的一部分。与此同时,集成光子学也一直在改变着人类控制光的方式,各种各样的光学设备被用于数据通信、光学成像、传感技术、生物医学光子学等领域。而且,利用微纳光学器件还可以对光路进行路由和整形,能够将整个光学系统集成到一个微型芯片上。 然而,尽管取得了一些令人印象深刻的成就,但集成光子学一直缺少一种实现完全微型化的关键组件——高性能芯片级激光器。虽然近红外激光器已经取得了一些进展,但目前为光子芯片供电的可见光激光器仍然是台式激光器,无法应用在实验室之外的实际应用领域,而且价格比较昂贵。同时可见光对包括量子光学、生物成像、发光显示在内的诸多应用至关重要,这就需要一种可调谐窄线宽芯片级激光器来发射不同颜色的光。 为了解决这个问题,美国哥伦比亚大学工程学院的利普森纳米光子学团队(Lipson Nanophotonics Group)研发了一种纯度非常高的芯片级窄线宽可见光激光器。激光器的发光波长可以在近紫外到近红外范围之内精准快速调谐。研究人员称其为“用于AR/VR的量子光学和激光显示器的显著小型化进步”。 使用微米级的氮化硅谐振器和商用Fabry-Pérot激光二极管,团队实现了高达12.5nm粗调和33.9GHz无跳模微调,本征线宽低至几千赫兹。相比于同种类型的可见光调谐窄线宽集成激光器,这款新型激光器的体积更小且波长可低至404nm。该研究以“Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths”为题发表在Nature Photonics上( DOI: 10.1038/s41566-022-01120-w)。 图 集成激光平台:其中单个芯片产生窄线宽、可调谐的可见光覆盖所有颜色。 该研究的主要作者 Mateus Corato Zanarella 表示,他们通过集成光子学打破了高性能可见激光器的现有标准,即传统的只能是台式激光器且成本需要数万美元,这非常令人兴奋。“到目前为止,还不可能缩小可调谐窄线宽可见激光器的技术。尤其是量子光学,它需要在单个系统中使用多种颜色的高性能激光器。我们希望该研究可以为现有或者未来的技术实现完全集成的可见光系统。” 为何需要低于红色波长的光发射? 当涉及一些重要应用时,发射波长低于红光的激光器的重要性就凸显了。比如,显示器需要同时使用红、绿、蓝三原色来合成任意颜色。在量子光学中,绿色、蓝色和紫色的激光可用于捕获、冷却原子和离子。在水下激光雷达(光探测和测距)中,一般需要绿光或蓝光,因为水对这两种光的吸收比较低。但是,在短于红光波长下,光子集成电路的耦合和传播损耗显着增加,不利于高性能激光器的制作。 如何解决耦合和传播损耗? 研究人员通过选择Fabry-Perot(FP,法布里-珀罗 )二极管作为光源来解决了耦合损耗问题,最大限度地降低了损耗对芯片级激光器性能的影响。 与使用不同类型光源的其他策略不同,该团队的方法能够实现创纪录的短波长 (404 nm) 激光,同时还提供高光功率的可扩展性。 FP 激光二极管是一种廉价且紧凑的固态激光器,广泛应用于科学研究和工业生产。但是,它们同时发出多种波长的光并不容易调谐,因此在高纯度精密调谐激光应用中并不合适。于是研究人员通过将它们与专门设计的光子芯片相结合,实现单频、窄线宽和可调谐的激光器。 为了克服传播损耗,研究人员设计了一个可以同时最小化所有可见波长的材料吸收和表面散射损耗的平台。他们使用氮化硅作为光波导,这是一种广泛用于半导体行业的电介质,并且在可见光波段透明。虽然可能会有一些微小的吸收,但是在制造过程中氮化硅也会不可避免的出现粗糙,光仍然会受到损失。团队通过设计带有特殊类型的环形谐振器的光子电路解决了这个问题。该环沿其圆周具有可变宽度,允许窄波导的单模操作特性和宽波导的低损耗特性。由此产生的光子电路向 FP 二极管提供波长选择性光反馈,迫使激光器以非常窄的线宽以单一所需波长发射。 Corato Zanarella 表示,“通过集成这些设计精巧的组件,我们能够构建一个可以发射所有颜色的光的多功能可扩展平台”。 革新技术 “作为一家激光器制造商,我们早已认识到集成光子学将会对激光行业产生巨大的影响,由此实现迄今为止不可能实现的新一代应用。” Toptica Photonics激光技术总监 Chris Haimberger 评价称, 这项工作代表了在追求紧凑、调谐可见光激光器方面向前迈出的重要一步,有望为为计算、医学和工业的未来发展提供源源不断的动力。” 该研究有望极大促进诸多应用的发展,比如: 量子信息 目前大多数用于量子计算的量子位都是使用原子或离子,它们通常被可见光捕获并探测。这就要求可见光的的纯度必须高(窄线宽)并且具有非常特定的波长才能解决原子跃迁问题。但是现在所采用的激光器不仅价格昂贵而且是台式激光器,尺寸较大。但是通过利普森纳米光子学团队的新研究,这种传统的台式激光器可以被成本较低的芯片级可调谐可见光激光器代替,从而使整个量子系统按比例缩小,实现高度集成。 原子钟 当前最精确的时钟基于锶原子,它需要同时使用许多不同颜色的激光捕获和探测。 与量子光学系统类似,目前可用的激光器的尺寸太大,难以实际应用,只能在实验室中实现。然而,芯片级激光器的出现使缩小时钟系统成为可能,以制造便携式原子钟。 生物传感 有些神经探针使用一种称为光遗传学的技术来测量、修改和理解神经反应。在这项技术中,神经元被基因改造以产生一种叫做视蛋白的蛋白质,它对可见光敏感。通过将可见光(通常是蓝光)照射到这些细胞中,科学家们可以随意激活特定的神经元。同样,在荧光成像中,荧光团需要用可见光激发才能生成所需的图像。这种高性能、紧凑型激光器为上述系统的微型化打开了大门。 Li-Fi 随着通信系统中对带宽的需求增加,网络已经变得饱和。Li-Fi 或可见光通信是一项快速发展的技术,有望在用户端补充传统的微波链路以克服这一瓶颈。激光器的高调制速度非常适合实现极快的光无线通信链路。 未来展望 该研究团队已经为他们的技术申请了临时专利。研究人员正在探究如何对激光器进行光学和电气封装,将它们变成独立的单元,从而用于芯片级可见光引擎、量子实验和光学时钟的光源。 “为了进一步发展,我们必须使激光系统具备小型化和可拓展的特征,从而让它们应用到大规模部署的技术中。”Michal Lipson教授称,“集成光子学是一个令人兴奋的领域,它正在彻底改变我们的世界,从光通信到量子信息再到生物传感。” |