相干声子驱动的谷间散射和拉比振荡研究获进展

时间:2023-10-11 09:43来源:中国科学院物理研究所作者:wuping 点击:
------分隔线----------------------------

摘要:

关键字:相干,声,子,驱动,的,谷间,散射,和,拉比,振荡,

二维过渡金属硫族化合物因能带具有多谷结构,赋予了电子谷自由度,因而成为研究多体相互作用的理想平台。作为退谷极化的主要机制,自由电子或束缚激子的谷间散射过程,对探讨激发态电子-声子相互作用以及谷电子器件的设计和实现均至关重要。目前,关于谷间散射的理论和实验研究,多基于热平衡态或准平衡态。而超短激光脉冲能够驱动晶格和电子远离平衡状态,体系的超快动力学过程和基本机制尚不明确。

近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室SF10组博士研究生王晨宇、刘新豹、陈擎等在副研究员王亚娴、研究员孟胜的指导下,利用组内自主开发的非绝热含时密度泛函分子动力学方法和软件(TDAP),探究了单层WSe2中相干声子诱导的激发态电子K→Q的谷间散射过程(图1),在飞秒时间尺度揭示了非平衡态电声耦合的规律。

研究表明,晶格沿布里渊区边界M点纵波声学声子[LA(M)]的相干振荡,可诱导占据在K谷的光激发电子转移到较低能级的Q谷,散射过程时间尺度约为400fs,与实验结果相符。而与目前实验中观测到的电子占据数指数型衰减有明显不同的是,相干声子驱动的谷间散射呈现出“阶梯式”变化的新奇特征。一方面,谷间散射主要发生在相干声子振幅最小而晶格振动速度最大时;另一方面,电子在K谷散射至Q谷后,观察到由Q谷至K谷的逆散射,类似于周期场驱动下的拉比振荡过程(图1、2)。 这两个特征明显区别于热声子条件依从的费米黄金规则,阐明了非绝热效应的关键作用。这种非绝热电子-声子相互作用在二能级模型中得到了直接印证,即当原子接近平衡位置时,非绝热耦合矩阵元达到峰值,促进谷间的电子转移,进而诱导出阶梯式的散射过程(图3)。

此外,该研究探索了借助相干声子调制谷间散射的通用路径。LA(M)声子振幅增加利于提高电子K→Q的谷间散射速率;进一步,借助超快激光脉冲结合声子间的非线性耦合,可实现对短波LA(M)声子振幅的有效操控(图4)。

相关研究成果以Coherent-phonon-driven intervalley scattering and Rabi oscillation in multivalley 2D materials为题,发表在《物理评论快报》(Physical Review Letters)上。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院的支持。

 

image.png

 

图1.?WSe2中光激发电子谷间散射示意图,以及K/Q谷占据数的拉比振荡。

 

image.png

 

图2.? (a)K/Q谷瞬时能级(上)和LA(M)声子的相干振动(中)。K/Q谷上电子占据数的演化。(b)上图:40、300、500fs下模拟K/Q谷上的光发射信号。下图:实验及理论模拟中K谷与Q谷电子信号比值随时间的演化。灰色虚线标定为K谷与Q谷信号相当的临界时间。

 

image.png

 

图3.?(a)模型(红线)及TDDFT计算(黑线)中K/Q谷瞬时能级的时间演化;(b)模型计算出的Q谷占据数及非绝热耦合矩阵元(NACME)(蓝色背景)的时间演化。

 

image.png

????图4.?(a)K谷至Q谷散射速率随LA(M)声子振幅的变化;(b)长波A1声子与短波LA(M)声子间的耦合示意图;(c)A1声子驱动下,LA(M)声子的时间演化。

【激光网激光门户网综合报道】( 责任编辑:wuping )
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------

【媒体须知】凡注明"来源:激光门户网portalaser.com.cn"的作品,包括但不限于本网刊载的所有与激光门户网栏目内容相关的文字、图片、图表、视频等网上内容,版权属于激光门户网和/或相关权利人所有,任何媒体、网站或个人未经激光门户网书面授权不得转载、摘编或利用其它方式使用上述作品;已经书面授权的,应在授权范围内使用,并注明"来源:激光门户网"。违反上述声明者,本网将追究其相关法律责任。

【免责申明】本文仅代表作者个人观点,与激光网激光门户网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网转载稿件或作者投稿可能会经编辑修改或者补充, 如有异议可投诉至:Email:portallaser@qq.com

Copyright   2010-2035 portalaser.com.cn Inc. All rights reserved.激光门户 版权所有
鄂ICP备2022018689号-1