增材制造从三维模型出发实现零件的直接近净成形制造。相比传统的减材制造,增材制造将多维制造变成简单的由下而上的二维叠加,降低了设计与制造的复杂程度。航空装备领域目前涉及的增材制造主要是金属材料增材制造,已发展出激光增材制造、电子束增材制造和电弧增材制造三类增材制造技术。 激光增材制造是当前航空装备领域最具代表性的增材制造方法,主要包括以粉床铺粉为技术特征的激光选区熔化和以同步送粉为技术特征的激光直接沉积。激光选区熔化工艺热输入小、成形尺寸精度高,适合制造航空发动机喷嘴、涡流器等复杂结构零件以及拓扑点阵等新型结构;激光直接沉积工艺效率较高、力学性能较好,但制造精度不高,适合制造飞机框梁等重要承力结构。由于国内外对激光增材制造技术非常重视,其技术发展迅速,陆续应用于飞机和航空发动机的制造,并且呈现出快速增长的趋势。 为了更好地把握增材制造的发展现状和趋势,提前做好航空领域增材制造技术发展的战略布局,推进增材制造在航空领域的发展与应用,《航空装备激光增材制造技术发展及路线图》一文,针对激光增材制造最近几年的发展,开展文献、资料、信息的搜集、整理、分析。在对增材制造现状和发展趋势分析的基础上,提出2035年航空领域增材制造技术发展目标和相应的政策和环境支撑、保障需求,并尝试给出2035年技术发展路线图建议。 航空装备激光增材制造路线图研究 l 2035年发展目标 1.需求 激光增材制造基于数模切片通过逐层堆积实现零件近净成形制造,无需模具,节省材料,缩短研制和生产周期,降低制造成本。特别适合复杂形状零件、梯度材质与性能构件、复合材料零件和难加工材料零件的制造,还支持结构设计创新和结构功能一体化制造。 航空航天领域的零件,外形复杂多变,材料硬度、强度等性能要求较高,难以加工且成本较高。而新生代飞行器正在向高性能、长寿命、高可靠性以及低成本的方向发展,采用整体结构、复杂大型化是其发展趋势。正是基于此发展趋势,激光增材制造技术越来越受到航空航天制造商的青睐。 激光增材制造的 Eurostar E3000 卫星支架 航空发动机燃油喷嘴、轴承座、控制壳体、叶片等零件,内部具有复杂油路、气路和型腔,为提高效能而进行结构创新设计,更增加了结构的复杂性和制造难度。飞机发动机舱进、排气门格栅结构,武器舱的舱门支座等部件,结构非常复杂,这些新型复杂构件的成形对基于激光选区熔化的增材制造技术具有迫切需求。 航空发动机各类机匣、压气机/涡轮整体叶盘、尾喷调节片等结构,形状复杂,为提高效能甚至需采用异种或梯度材料结构。飞机超高强度钢和不锈钢接头、滑轨、起落架,铝合金承力框、梁,钛合金框、支座、滑轨、滑轮架、筋壁板等承力构件,高马赫飞行器翼舵格栅结构承载骨架,为提高减重和承载效能须进行拓扑优化结构创新设计,结构的复杂性和制造难度增加,采用传统工艺制造难度大,对激光直接沉积增材制造具有明确技术需求。 Trent XWB-84 发动机中间级压缩机匣,该机匣采用包括增材制造工艺和新的焊接技术等最新设计方法和制造技术。 高推重比发动机涡轮进口温度的提高,要求采用超高温金属间化合物以及金属基/陶瓷基复合材料等新型高温结构材料。新型高温/超高温材料零部件的研制对激光增材制造技术提出了潜在需求。 飞机、发动机某些带局部凸台、耳片等特殊结构的承力构件,采用锻造工艺无法保证局部组织和性能;大型飞机的超大规格钛合金承力框,超出现有锻造设备的加工能力。对锻造+增材制造/增材连接的复合制造技术具有明确技术需求。 激光增材制造技术经过近年的项目支持,基本解决了原材料、成形工艺、复杂零件制造等关键技术,开始获得应用。目前制约激光增材制造大规模应用的瓶颈之一是疲劳问题。需要特别重视激光增材制造疲劳问题的原理性研究。 为了提高航空产品激光增材制造的工艺过程稳定性和质量,需要发展基于熔池动态监测、粉末床和熔融层可见光检测的在线监测、检测技术。 航空领域对激光增材制造的需求主要体现以下几个方面: (1)飞机钛合金框梁重要承力结构高性能高可靠激光直接沉积; (2)飞机超高强度钢起落架抗疲劳长寿命激光直接沉积; (3)飞机钛合金、铝合金格栅点阵复杂结构激光选区熔化; (4)航空发动机燃油喷嘴类零件激光选区熔化; (5)航空发动机涡流器、叶片类零件激光选区熔化; (6)航空发动机控制、附件壳体类零件激光选区熔化; (7)航空发动机机匣、轴承座类承力零件激光选区熔化; (8)航空发动机整体叶盘/机匣类承力零件激光直接沉积; (9)飞机、发动机超大规格结构锻造+增材制造/增材连接的复合制造; (10)激光增材制造疲劳问题的原理性研究; (11)激光增材制造过程的在线监测、检测技术研究。 2.目标 |