增材制造过程的逐层堆积引起热应力和变形的累积。每层材料的熔融、凝固均会产生一次凝固收缩。因此,增材制造的制件内部存在较大的应力,这会引起制件开裂或宏观变形。对于飞机框梁、起落架等大投影面积、大厚度结构,以及发动机燃油喷嘴、涡流器、机匣等复杂、薄壁结构,应力变形问题更为突出,导致制件外观尺寸和内部通道等形状控制难度大为增加。因此,需要通过优化制件的空间摆放,采用合适的沉积策略、工艺支撑,优化成形工艺参数、采用合适的预热及后热处理,才能实现对应力变形的有效控制。 (4)激光选区熔化成形复杂结构的评价与测试技术 激光增材制造技术应用于飞机重要承力和功能结构,其内部缺陷、组织特点不同于锻造、铸造结构,导致传统的检测、评价方法和技术标准未必适用。激光增材制造技术应用于发动机燃油喷嘴、涡流器、轴承壳体等带内部流道或者中空薄壁类的复杂结构,这些结构的内部流道角度、形状和尺寸公差、表面粗糙度,对结构功能均有重要影响;但是这些结构特征采用常规的检测技术难以检测,必然会对增材制造技术的推广应用造成限制。由于激光选区熔化成形材料及结构的组织、缺陷有其特殊性,常见的气孔、未熔合、裂纹等缺陷的尺寸仅为微米量级,采用常规的方法难以检测,另外,材料的组织特征及缺陷的类型、尺寸、分布等对结构的力学性能、可靠性和使用寿命影响还缺乏系统性研究。这些问题严重限制了激光增材制造技术在航空领域应用。 (5)增材制造元件级及零件级力学性能考核 由于增材制造与传统的铸造、锻造组织缺陷存在明显差异,使增材制造构件的力学性能及其断裂行为存在显著不同。对于增材制造整体叶盘,如何表征材料及整体叶盘的力学行为也是亟待解决的科学问题之一。增材制造整体叶盘的力学行为研究,包括增材制造材料力学行为、元件级(单元体)力学行为、零件典型件力学行为研究。对于单元体力学行为、零件典型件力学行为,国内还没开展相关研究,国外RR、GE、MTU等机构的研究也鲜有公开报道,仍处于保密阶段。 结论与建议 (1)增材制造特别适合零件的快速研制、快速验证和设计改进,并且支持结构设计创新,因此在飞机钛合金承力框、滑轮架和超高强度钢起落架外筒等重要承力结构以及飞机舱门连接件、辅助动力舱进气门、排气门格栅结构、武器舱门支座、横梁等复杂结构的制造中得到应用,在航空发动机燃油喷嘴、涡流器、涡轮叶片、传感器壳体、燃油控制系统壳体等复杂结构的制造中也得到批量应用。不仅缩短了零件研制周期,降低了制造成本,而且增加了设计的自由度,通过结构功能一体化设计创新,取得了质量减轻、承载耐温能力提高、工作效能提高等效果。一方面加快了飞机、发动机的研制进度,另一方面由于采用结构功能一体化制造,大大减少了零件数量,显著提高了装备的可靠性。 (2)国内增材制造技术发展仍存在短板和不足,制约着增材制造技术创新及产业化应用。增材制造设备激光器、光路、加工头等核心器件自主保障能力不足,零件数模切片、扫描路径规划、实时监测控制软件研发能力欠缺,限制了工艺创新的上升空间。对传统材料和新材料增材制造组织、性能、缺陷、应力变形发展规律的研究不深入,导致制件增材制造的控性控形工艺开发效果不佳。对于粉末、丝材原材料和增材制造工艺过程的质量控制以及制件性能评价研究不充分,导致相关材料规范、工艺标准、检测方法、产品技术标准的缺失,严重制约增材制造的批量化规模化应用推广。 (3)为推动我国增材制造技术在航空领域的发展和应用推广,需要从科研项目支持、科研生产条件配套、设备研发能力提升等方面提供全方位的战略保障。具体建议如下: ①设立不同类型科研项目支持技术研发 |