西安光机所光学成像研究取得进展

时间:2019-02-26 10:09来源:西安光机所作者:Jucy 点击:
------分隔线----------------------------

摘要:2月18日出版的美国光学学会旗下期刊OpticsExpress同时刊登了中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利研究组的三篇研究论文。 在第一篇题为Large-scale3Dimagingofinsectswithnaturalcolor的文章中,研究人员实现了大尺寸昆虫自然色三维高分辨率定量成像。经过亿万年的进化,生物结构非常复杂与精巧,并承载了多样的功能和迷人的景象。生物结构在不同

关键字:西安,光机,所,光学,成像,研究,取得,进展,2月,

2月18日出版的美国光学学会旗下期刊Optics Express 同时刊登了中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利研究组的三篇研究论文。 

在第一篇题为Large-scale 3D imaging of insects with natural color 的文章中,研究人员实现了大尺寸昆虫自然色三维高分辨率定量成像。经过亿万年的进化,生物结构非常复杂与精巧,并承载了多样的功能和迷人的景象。生物结构在不同尺度、不同维度和不同部位的观察与形态分析,为科学研究结果提供最直接的证据,在众多学科领域扮演着不可或缺的角色。目前高分辨率三维成像技术已经在生物学领域有了广泛的应用,并推动着生物学研究不断取得新的进展。但是已有的技术与研究工具还存在一些不足,比如对大样品进行三维成像时数据量大且耗时,高分辨率与大成像视场难以同时满足,样品自然色彩难以获取等。因此,寻找一种能够对昆虫进行快速三维成像,并获得其高分辨形貌信息和色彩信息的设备,就成了昆虫分类学家和相关研究领域的迫切需要。

为了解决这些问题,课题组在前期工作的基础上,与中科院动物研究所合作,通过对彩色结构照明光学成像系统和相关算法进行改造升级,克服了已有三维成像方法的缺陷,大大提升了系统的光能利用率和照明均匀性,使得成像系统在高分辨率、大尺寸、三维、快速、全彩色和定量分析等六大成像要素上均得到有效提升。该研究对大尺寸昆虫的高分辨三维定量分析具有重要的参考意义,同时为昆虫结构色的研究提供了新的技术手段,在进化生物学、仿生学、分类学、功能形态学、古生物学和工程学等领域具有广泛的应用前景。

在第二篇题为Real-time optical manipulation of particles through turbid media 的文章中,研究人员主要实现了透过散射介质后对微粒的实时光学微操纵。2018年诺贝尔物理学奖的一半授予了光镊的发明人Arthur Ashkin,在那里激光捕获和操纵微粒是在透明和无散射介质中进行的。而当光学系统中有散射介质存在时,成像目标难以在像面清晰呈现,激光也难以聚焦成为一个焦点。目前有多种方法来克服散射的影响,其中最常用的方法是利用光场调控器件和相应的优化算法对经过散射介质后的光场进行调控。遗传算法具有收敛速度快、抗噪声能力强的优势已经被广泛应用于散射介质后的光场聚焦和成像,然而遗传算法在实际应用中依然存在一些问题,比如随着优化的进行,其收敛速度逐渐变慢,噪声对最终聚焦结果影响较大,优化结果受探测器动态范围限制等。近年来,随着相关技术的成熟,已有研究者将波前矫正技术和光学捕获结合,实现利用散射光场对微粒的捕获,但是此类技术在散射介质后产生的聚焦光场质量不高,而且无法实现在散射介质后特定目标点对微粒的捕获,也无法在散射介质后沿特定路径对粒子进行操控,灵活性以及应用场合受到限制。

为了实现对经过散射介质后光束的高质量聚焦并将其应用于实际,该文提出了一种相间分区域波前校正方法,实现了入射光经过散射介质后单点和多点的重新聚焦。将该方法和光镊技术结合,可以对散射介质后单一粒子和多个粒子的同时捕获,并且可以实现在散射介质后某一平面内沿特定轨迹对微粒的操纵。与传统遗传算法相比,该方法具有收敛速度快、聚焦强度高、对探测器动态范围需求小的优点,大大提高了光经过散射介质后的聚焦效果,不仅可以应用于光学微操纵,而且可以应用于其它相关领域,为散射介质后的物体成像、深层样品荧光显微成像以及散射介质后的光场调控提供了有效手段。

在第三篇题为Three-dimensional space optimization for near-field ptychography 的文章中,研究人员实现了近场叠层成像术的三维空间优化。叠层成像术(Ptychography)是一种无透镜的相干衍射成像技术,拥有大视场、高分辨和定量相位的优势。通过记录多幅交叠的衍射图像,利用交叠区域的数据冗余和先进的相位恢复算法,能恢复出物体的透射率函数分布、分解相干态以及校准系统误差。这一无透镜的成像方法已经成功应用于可见光、电子波段和X射线波段。然而,叠层成像术在实际应用过程中依然存在一些限制,比如在针对三维厚样品成像时,其厚度是未知的,传统成像方法是尽可能减小对样品每一层的成像厚度,这就增加了成像的层数,而且该方法只适用于连续样品,对于离散的有着非均匀空间分布的样品则可能会出现伪影,额外的空白层也会降低图像质量。

该文提出一种基于遗传算法的三维叠层成像算法(GA-3ePIE),可同时优化层数与层距,并且适用于近场三维叠层成像术。相比于远场,它可以使用更少的图像重构相同大小的视场,而且对光源相干性以及探测器动态范围要求更低。通过分析发现,随着交叠率和采样率的提升,可恢复层数变多。该算法也能被推广到X射线及电子波段领域,同时也可以用于其它计算成像技术,如傅里叶叠层显微成像术。

【激光网激光门户网综合报道】( 责任编辑:Jucy )
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------

【媒体须知】凡注明"来源:激光门户网portalaser.com.cn"的作品,包括但不限于本网刊载的所有与激光门户网栏目内容相关的文字、图片、图表、视频等网上内容,版权属于激光门户网和/或相关权利人所有,任何媒体、网站或个人未经激光门户网书面授权不得转载、摘编或利用其它方式使用上述作品;已经书面授权的,应在授权范围内使用,并注明"来源:激光门户网"。违反上述声明者,本网将追究其相关法律责任。

【免责申明】本文仅代表作者个人观点,与激光网激光门户网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网转载稿件或作者投稿可能会经编辑修改或者补充, 如有异议可投诉至:Email:portallaser@qq.com

Copyright   2010-2035 portalaser.com.cn Inc. All rights reserved.激光门户 版权所有
鄂ICP备2022018689号-1