江苏激光联盟导读: 德克萨斯A&M大学研究人员开发的一种新方法优化了合金性能和工艺参数,以制造出优质的无缺陷3D打印金属零件,从而推动其在增材制造、航空航天、汽车和国防等领域的广泛应用。 日前,德克萨斯A&M大学(Texas A&M University,TAMU)研究团队的一项最新研究可能会使使用激光床粉末熔融3D打印技术打印金属合金的均匀、无缺陷零件变得更加容易。研究人员系统地研究了合金成分对微结构的印刷适性和凝固性的影响,以更好地理解合金成分、工艺变量和热力学如何影响增材制造的零件。通过3D打印实验,他们定义了优化合金性能所需的合金化学成分和工艺参数,并在微型尺度上打印出优质、相同的零件。利用机器学习(Machine Learning, ML),他们创建了一个公式,可以用于任何类型的合金,以防止不均匀性。
研究中使用的镍粉合金的彩色电子显微照片。来源:Raiyan Seede。
研究原理
用于增材制造的合金金属粉末可以包含不同浓度的金属混合物,例如镍、铝和镁。在激光床粉末熔融3D打印过程中,这些粉末在被激光束加热后会迅速冷却。合金粉末中的不同金属具有不同的冷却性能,并且以不同的速率凝固。这种不一致会产生微观缺陷或微观偏析。
L-PBF工艺参数图(最终确定的匙孔标准和最大填充间距轮廓)。镍-20at% 铜和镍-5at% 铝最终确定的匙孔标准为是熔池宽度/深度(表示为W/D)≤ 1.2,镍-5at% 锆和镍-8.8at% 锆的W/D≤ 1.5。对于所有地图,缺乏熔融的标准保持在D ≤ 0.667t,、使用支持向量机(SVM)将成球区域拟合到单轨道实验数据。D:熔池深度,W:熔池宽度,t:粉末层厚度,hmax:最大开口间距。
镍锌合金单次激光扫描横截面的扫描电子显微镜图像。深色的富镍相交错着具有均匀微观结构的较轻相。在熔池结构中也可以观察到孔隙。
左侧栏:以212瓦和0.3米/秒的速度打印的每种合金成分的单个轨迹的光学显微照片,红、蓝色方框表示波长色散光谱图(wavelength dispersive spectroscopy,WDS)的绘制位置。中间栏:从每个熔池顶部拍摄的WDS图右侧栏:从每个熔池边缘拍摄的图,在光学显微照片中用颜色编码。白色虚线表示在这些图像中难以区分的边界 应用前景
来源:Photonics官网,Raiyan Seede et al.,Effect of composition and phase diagram features on printability and microstructure in laser powder bed fusion: Development and comparison of processing maps across alloy systems,Additive Manufacturing,https://doi.org/10.1016/j.addma.2021.102258 江苏激光联盟陈长军 |