应用于激光粉末床熔融技术的准晶增强铝基复合材料

时间:2023-01-13 16:03来源:3D科学谷作者:wuping 点击:
------分隔线----------------------------

摘要:目前关于激光粉末床熔融(LPBF)增材制造技术成形高性能Al基复合材料的主要方法是在铝基体中加入硬质陶瓷颗粒,但大部分陶瓷颗粒的热性能,力学性能等与铝基体差异较大,冶金结合不良,

关键字:应用于,激光,粉末,床,熔融,技术,的,准晶,增强,

目前关于激光粉末床熔融(LPBF)增材制造技术成形高性能Al基复合材料的主要方法是在铝基体中加入硬质陶瓷颗粒,但大部分陶瓷颗粒的热性能,力学性能等与铝基体差异较大,冶金结合不良,可能导致成形零件在复杂载荷条件下过早失效,例如动载疲劳,热疲劳等。

金属增强体,如金属间化合物、金属玻璃和准晶(QCs),由于其与金属基体相协调的优异性能而受到越来越多的关注。准晶具有高硬度、低摩擦系数和高抗腐蚀/磨损性。在众多准晶合金中,Al-Fe-Cr系准晶合金的成本低,准晶可成形性好。

巴黎高科国立高等工艺与技术学院(Arts et Metiers Paristech),MSMP实验室增材制造方向负责人,康楠副教授团队,以LPBF成形Al-Fe-Cr准晶增强Al基复合材料为研究对象,重点研究了LPBF制备过程中Al-Fe-Cr合金的组织演化规律和强化机制,以期为获得LPBF成形高性能Al合金提供理论依据和设计支持。本期谷.专栏将分享这一科研成果的主要内容。

▲相关论文发表在Advanced Powder Materials期刊。

论文下载:https://wwul.lanzoue.com/iDRl90k7jbkd

研究内容

采用LPBF工艺制备Al-Fe-Cr准晶增强Al基复合材料的最佳能量密度范围为150~250 J/mm3。在最优工艺参数下,LPBF成形的Al-Fe-Cr合金具有快速凝固诱导产生的多级异构组织复合结构。成形试样的致密度高,可达99.8%±0.08%,且无明显的缺陷。

从宏观上看,该合金由沿熔池边界外延生长的柱状晶构成,熔池边界准晶富集,熔池内部准晶贫瘠。从单一熔池的角度来看,SLM成形的样品呈现出明显复合结构:熔池内部的激光熔合区(LFZ);熔池边界(MPB)和热影响区(HAZ)。在LFZ观察到大小为100至300nm球形Al-Fe-Cr准晶颗粒,这些细小的准晶颗粒被包围在Al基体构成的尺寸细小的胞状结构内。粗大的花瓣状/球形准晶颗粒和矩形的θ-Al13(Fe, Cr)2-4颗粒分布在MPB。此外,HAZ呈现出弥散分布在α-Al基体中的尺寸细小的球形、矩形或无定形颗粒的微观组织。这种异质结构的形成可以归因于LPBF加工过程中单个熔池内的温度梯度和凝固速度的差异。


图1 LPBF成形试样的熔池形貌与非均匀分布组织。

图2 LPBF成形试样的熔池不同区域的相分析。

图3 (a)LPBF成形Al-Fe-Cr合金制备过程示意图与计算凝固曲线;(b)单个熔池的典型组织形貌示意图和(c-e)SLM快速凝固过程中Al-Fe-Cr合金的组织演化示意图。

LPBF成形Al-Fe-Cr准晶增强Al基复合材料表现出较高的抗拉强度。沉积态成形样品的静态力学性能分析结果显示:该合金的抗拉强度为530.80±3.19 MPa,屈服强度为395.06±6.44 MPa,试样的延伸率为4.16%±0.38%。LPBF工艺成形Al-Fe-Cr合金的宏微观组织特征与拉伸力学行为间关系的研究结果表明:由于成形试样中二十面体纳米准晶颗粒带来的Orowan强化以及成形试样内部位错强化的共同贡献,该合金表现出较高的抗拉强度和屈服强度。由样品的断口分析结果可知,其断裂失效行为是韧-脆混合断裂机制。

图 4 LPBF成形试样的应力-应变曲线,性能对比与断口分析。

总结

本文以LPBF成形准晶增强Al-Fe-Cr 合金为研究对象,对该合金的组织特征和力学性能进行了表征。明晰了异构组织的构成,并深入讨论了纳米准晶颗粒的相变与基体之间的位相关系,厘清了LPBF成形Al-Fe-Cr合金的组织演化机制,研究了成形试样的拉伸性能,揭示了准晶颗粒对其力学性能的强化机制,为后续开发适用于LPBF技术的高性能铝合金提供了新视角。

【激光网激光门户网综合报道】( 责任编辑:wuping )
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------

【媒体须知】凡注明"来源:激光门户网portalaser.com.cn"的作品,包括但不限于本网刊载的所有与激光门户网栏目内容相关的文字、图片、图表、视频等网上内容,版权属于激光门户网和/或相关权利人所有,任何媒体、网站或个人未经激光门户网书面授权不得转载、摘编或利用其它方式使用上述作品;已经书面授权的,应在授权范围内使用,并注明"来源:激光门户网"。违反上述声明者,本网将追究其相关法律责任。

【免责申明】本文仅代表作者个人观点,与激光网激光门户网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网转载稿件或作者投稿可能会经编辑修改或者补充, 如有异议可投诉至:Email:portallaser@qq.com

Copyright   2010-2035 portalaser.com.cn Inc. All rights reserved.激光门户 版权所有
鄂ICP备2022018689号-1